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The Pierre Auger Observatory’s (PAO) shower profile measurements can be used to constrain the
chemical composition of the ultra-high energy cosmic ray (UHECR) spectrum. In particular, the
PAO’s measurements of the average depth of shower maximum and the fluctuations of the depth of
shower maximum indicate that the cosmic ray spectrum is dominated by a fairly narrow distribution
(in charge) of heavy or intermediate mass nuclei at the highest measured energies (E >∼ 1019 eV), and
contains mostly lighter nuclei or protons at lower energies (E ∼ 1018 eV). In this article, we study
the propagation of UHECR nuclei with the goal of using these measurements, along with those
of the shape of the spectrum, to constrain the chemical composition of the particles accelerated
by the sources of the UHECRs. We find that with modest intergalactic magnetic fields, 0.3 nG
in strength with 1 Mpc coherent lengths, good fits to the combined PAO data can be found for
the case in which the sources accelerate primarily intermediate mass nuclei (such as nitrogen or
silicon). Without intergalactic magnetic fields, we do not find any composition scenarios that can
accommodate the PAO data. For a spectrum dominated by heavy or intermediate mass nuclei, the
Galactic (and intergalactic) magnetic fields are expected to erase any significant angular correlation
between the sources and arrival directions of UHECRs.

I. INTRODUCTION

The chemical composition of the ultra-high energy cos-
mic ray (UHECR) spectrum has long been a topic of
great interest [1, 2, 3, 4, 5, 6]. Until recently, however,
very little was known about the nature of these particles.
On one side of the debate, the so called Hillas criterion [7]
gives a preference for the electromagnetic fields of cosmic
ray sources to accelerate heavy nuclei to higher energies
than protons or light nuclei. On the other side, it has
been argued that the angular correlations reported by
the Pierre Auger Observatory (PAO) [8], as well as fea-
tures in the shape of the UHECR spectrum [9], suggest
that these particles consist largely of protons. None of
these arguments, however, has yet settled the question of
what types of particles make up the UHECR spectrum.

Data from the Pierre Auger Observatory (PAO), how-
ever, is offering increasingly powerful insights into this
question. Firstly, the spectral shape predicted for the
UHECR all-particle spectrum depends not only on the
injected spectrum and spatial distribution of the sources,
but also on the chemical composition that is injected
from the sources of the highest energy cosmic rays. As
the PAO measures the UHECR spectrum with increasing
precision [10], this information can be used to constrain
the chemical composition of these particles [11]. Further-
more, the PAO is capable of performing several measure-
ments that can be used to directly or indirectly determine
the chemical composition of UHECRs as they enter the
Earth’s atmosphere. Among these empirical tools are
the measurements of the average depth of shower max-
imum, 〈Xmax〉, and the RMS variation of this quantity,
RMS(Xmax). On average, proton-induced showers reach

their maximum development deeper in the Earth’s atmo-
sphere than do showers of the same energy generated by
heavier nuclei. As a result, measurements of 〈Xmax〉 can
be used to infer the average chemical composition of the
UHECRs as a function energy.

Very recently, the PAO collaboration has announced
their first measurements of RMS(Xmax) [12, 13]. These
measurements, along with those of 〈Xmax〉, imply that
the UHECR spectrum contains a large fraction of heavy
or intermediate mass nuclei, especially at the highest
energies measured. Furthermore, the small values of
RMS(Xmax) measured by the PAO also imply that the
composition of the UHECR spectrum is relatively nar-
rowly distributed at the highest measured energies, con-
taining little or no protons or light nuclei. In this way,
the new RMS(Xmax) measurements not only confirm
and reinforce the conclusions drawn from earlier aver-
age depth of shower maximum measurements, but also
provide complementary information that enables one to
constrain the distribution of the various chemical species
present within the UHECR spectrum.

The remainder of this article is structured as follows.
In Sec. II we review the physics of UHECR nuclei prop-
agation. In Sec. III, we calculate the spectrum and
chemical composition of the UHECR spectrum for var-
ious choices of the injected chemical species and com-
pare these results to measurements of the PAO, ne-
glecting the effects of intergalactic magnetic fields. In
Sec. IV, we include magnetic fields in our calculation,
and show that fields with stengths and coherent scales
∼(B/0.3 nG)×(Lcoh/1 Mpc)1/2, are strongly preferred to
accomodate the PAO’s data. The best fits found are for
cases in which the sources of the UHECRs inject mostly
intermediate mass nuclei, such as nitrogen or silicon. Fi-
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nally, in Sec. V, we discuss the implications of our results
and summarize our conclusions.

II. THE PROPAGATION OF ULTRA-HIGH

ENERGY COSMIC RAY NUCLEI

For cosmic rays in the form of ultra-high energy (UHE)
protons, the dominant processes effecting their propa-
gation over cosmological distances are their interactions
with the cosmic microwave background (CMB) or cos-
mic infrared background (CIB), producing either pions
or electron-positron pairs. Pair production (p + γ →
p+ e+ + e−) dominates for energies below 1019.6 eV, and
occurs with sufficiently small inelasticity that it can be
treated as a continuous energy loss process [14]. Pion pro-
duction, by contrast, occurs with large inelasticity, with
individual occurrences of the processes p+γCMB → p+π0

or p+γCMB → n+π+ causing the primary proton to lose
a considerable fraction of its energy. Thus pion produc-
tion must be treated as a stocastic process, and follow-
ing its onset leads to the catastrophic attenuation of the
UHECR spectrum above ∼ 1019.6 eV known as the GZK
cutoff [15]. Furthermore, if enough center-of-mass en-
ergy is available, multi-pion production can also become
important.

The propagation of UHE cosmic ray nuclei is some-
what more complicated. In addition to energy losses from
pair-production, cosmic ray nuclei undergo photodisinte-
gration in scattering off the CMB and/or CIB at a rate
given by:

RA,Z,ip,in
=

A2m2
p

2E2

∫

∞

0

dǫ n(ǫ)

ǫ2

∫ 2Eǫ/Amp

0

dǫ′ǫ′σA,Z,ip,in
(ǫ′),

(1)
where A and Z are the atomic number and charge of the
nucleus, ip and in are the numbers of protons and neu-
trons broken off from a nucleus in the interaction, n(ǫ)
is the density of background photons of energy ǫ, and
σA,Z,ip,in

(ǫ′) is the appropriate cross-section [1, 2, 3, 16].
In our calculations, we use the infrared background
model of Ref. [17], although other models [18] yield sim-
ilar results. As a result of the process of photodisin-
tegration, the chemical composition that reaches Earth
can be significantly different than the composition that
is initially injected from the sources of UHECRs.

In previous work, we have described our Monte Carlo
code which models the propagation of UHE cosmic ray
nuclei over cosmological distances (see Ref. [4]). In this
article, we use this code to determine the spectrum and
composition of UHECRs that is predicted to reach Earth,
and compare this to the measurments of the PAO for a
variety of injected chemical compositions.

III. RESULTS IN THE CASE OF NEGLIGIBLE

MAGNETIC FIELDS

To begin, we consider the case in which only iron nuclei
are accelerated by the sources of UHECRs, and assume
that the deflection of UHECRs by intergalactic magnetic
fields is of negligible importance. We adopt a homoge-
neous distribution of sources, and a simple cosmic ray
injection spectrum of the form:

dN

dE
∝ E−αe−E/Emax . (2)

It is important to recognize that this describes the spec-
trum that is produced by the sources of the UHECRs,
which can be very different from the spectrum (and com-
position) that exists after the effects of propagation are
taken into account. As a function of the spectral slope
injected, α, and the energy cutoff, Emax, we can calcu-
late the resulting spectrum and composition predicted to
be observed at Earth, and compare this to the measure-
ments of the PAO.

In Fig. 1, we show our results for the cases of Emax =
1020.5 and 1021 eV. For each value of Emax, we have se-
lected α to produce the best fit to the PAO spectrum
(α =1.6 in each case). We note that although such a hard
spectra are not well motivated by non-relativistic diffu-
sive shock acceleration theory, such spectra have been
suggested by relativistic shock acceleration theory [19].
Furthermore, the reader should bear in mind that such
hard spectra obtain good agreement through the consid-
erable lightening of the arriving composition that they al-
low, caused through the additional contribution of liber-
ated protons following photodisintegration interactions.
Thus hard injection spectra provide the possibility of a
lightened composition at lower energies. This lightening
of the composition, however, comes at the price of a re-
duced spectral fit with the PAO data. Such good fits, for
the case of heavy nuclei, therefore exist through the bal-
ance between these two effects. In the middle and right
frames, we have used the results of hadronic simulations
to convert the chemical composition of the spectrum
found by our Monte Carlo into the related quantities ob-
served by the PAO – the average depth of shower max-
imum, and the RMS variation of this quantity [20]. We
show results using four different commonly used param-
eterizations [13] of air shower simulations [21]: QGSJET
II, QGSJET [22], SIBYLL 2.1 [23], and EPOS [24]. For
comparison, we also show the results that are obtained
for the cases in which either only protons or iron nuclei
are present in the cosmic ray spectrum at Earth. At some
level, the variations between the results of the different
hadronic simulations provide us with an estimate of the
systematic errors associated with our ignorance of QCD.

From Fig. 1, we see that in the case of all-iron in-
jecting sources with Emax <∼ 1020.5 eV, the measured
average depth of shower maximum consistently exceed
the predicted values. This is easy to understand from
the fact that 1020.5 eV iron nuclei fragment into nucle-
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FIG. 1: The spectrum (left), the average depth of shower maximum (center), and the RMS variation of the depth of shower
maximum (right), as measured by the Pierre Auger Observatory (PAO) [10, 12], compared to the predictions in the case that
the sources of the ultra-high energy cosmic rays accelerate only iron nuclei. The iron nuclei were assumed to be injected from
their sources with a spectrum of dN/dE ∝ E−αe−E/Emax , where Emax is 1020.5 or 1021 eV in the upper and lower frames,
respectively. In each case, the spectral index α was selected to provide the best fit to the spectrum measured by the PAO
(α = 1.6 in each case shown). In the center and right frames, we show the predictions using four different hadronic models
(QGSJET [22], SIBYLL [23], and EPOS [24]), and for comparison also show each simulation’s prediction for a spectrum at
Earth consisting of purely protons or purely iron nuclei.

ons with only ∼ 6× 1018 eV of energy each, thus leaving
only heavy nuclei to make up the spectrum at higher en-
ergies. As the maximum energy is increased, however,
more protons are present among the UHECRs, causing
the average composition to be considerably lighter. If we
increase Emax, we can better accomodate the measure-
ments of 〈Xmax〉, but also begin to significantly exceed
those of RMS(Xmax). For an all-iron source composi-
tion, we do not find any combination of Emax and α that
can simultaneously accomodate the PAO’s measurements
of 〈Xmax〉 and RMS(Xmax).

To see whether less heavy species of cosmic ray nuclei
might be able to better provide a reasonable fit to the
PAO data, we show results in Figs. 2 and 3 for the cases
of a pure silicon or pure nitrogen injection spectrum. For
the all-silicon case, the best fit corresponds to the choices
of Emax ≈ 1021 eV and α ≈ 1.8.1 Even in this best
case, however, the fit to the 〈Xmax〉 data is quite poor,
although better than that found in the all-iron case.

The all-nitrogen case even more clearly fails to accom-
modate the observations, in particular with regards to
the observed shape of the UHECR spectrum which, un-

1 Throughout this study, the quantity Emax refers to the cutoff
energy for iron nuclei. This is related to the cutoff for other
species of charge Z by Emax,Z = (Z/26) × Emax.

like the composition measurements, are not impacted by
uncertainties associated with the hadronic models. This
is in agreement with the conclusions drawn in Ref. [11].
Furthermore, the all-nitrogen case does not predict a suf-
ficiently rapid change of RMS(Xmax) with energy. We
thus conclude that while the PAO observations do not
appear to be very well fit by any of the scenarios we have
considered so far, the best (ie. least bad) fits are in those
cases in which the observed UHECR spectrum originates
largely from sources accelerating intermediate mass or
heavy nuclei (A ∼ 20).

If cosmic ray sources accelerate a mixture of dif-
ferent species of nuclei, this will impact 〈Xmax〉 and
RMS(Xmax) in somewhat different ways. In particu-
lar, whereas the average depth of shower maximum at a
given energy simply scales with 〈Xmax〉 ∝ 1/ 〈lnA〉, the
RMS(Xmax) for an ensemble of different nuclear species
is given by,

σ2
tot =

56
∑

A=1

(

fAσ2
A + fA(Xmax,A − 〈Xmax〉)

2
)

, (3)

where fA is the fraction of the total population with
atomic mass A, and σA is the RMS of Xmax predicted for
cosmic rays of that atomic mass. From this, we see that
the relatively low value of RMS(Xmax) observed by the
PAO not only indicates that a large proportion of the ar-
riving nuclei are heavy at the highest energies, but also
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FIG. 2: As in Fig. 1, but for the case in which only silicon nuclei are accelerated by the sources of the ultra-high energy cosmic
rays.
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FIG. 3: As in Figs. 1 and 2, but for the case in which only nitrogen nuclei are accelerated by the sources of the ultra-high
energy cosmic rays.

that their composition is fairly narrowly distributed in
charge– ie. the fraction of protons or light nuclei in the
UHECR spectrum must be small in order to prevent large
contributions from the fi(Xmax,i−〈Xmax〉)

2 terms in the
sum. In many cases, this leads to a tension between the
PAO’s measurements of 〈Xmax〉 and RMS(Xmax), which
can be made worse by considering cosmic ray sources
which inject particles with a mixed chemical composition.
We find that mixed (more than 2 component) composi-

tion scenarios, suggested to be indicated by the recent
PAO data [25], do not lead to sufficiently improved fits
to justify their consideration.

In Fig. 4, we show results for some selected cases of
mixed chemical composition. In particular, we consider
combinations of protons, nitrogen, silicon, or iron, and
have selected in each case the injected spectral index, en-
ergy cutoff, and fractional mixture that provides the best
fit to the PAO spectrum, 〈Xmax〉 and RMS(Xmax) mea-



5

 0.01

 0.1

 1

 10

 100

 18.5  19  19.5  20  20.5

E
2  d

N
/d

E
 [e

V
 c

m
-2

 s
-1

 s
r-1

]

log10 Energy [eV]

Emax,Z=1021 eV
α=1.8

50% p and 50% Fe

 650

 700

 750

 800

 850

 18  18.5  19  19.5  20

<
X

m
ax

>
 [g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 10

 20

 30

 40

 50

 60

 70

 80

 18  18.5  19  19.5  20

R
M

S
(X

m
ax

) 
[g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 0.01

 0.1

 1

 10

 100

 18.5  19  19.5  20  20.5

E
2  d

N
/d

E
 [e

V
 c

m
-2

 s
-1

 s
r-1

]

log10 Energy [eV]

Emax,Z=1021 eV
α=1.8

80% N and 20% Fe

 650

 700

 750

 800

 850

 18  18.5  19  19.5  20

<
X

m
ax

>
 [g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 10

 20

 30

 40

 50

 60

 70

 80

 18  18.5  19  19.5  20

R
M

S
(X

m
ax

) 
[g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 0.01

 0.1

 1

 10

 100

 18.5  19  19.5  20  20.5

E
2  d

N
/d

E
 [e

V
 c

m
-2

 s
-1

 s
r-1

]

log10 Energy [eV]

Emax,Z=1021 eV
α=1.8

20% N and 80% Si

 650

 700

 750

 800

 850

 18  18.5  19  19.5  20

<
X

m
ax

>
 [g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 10

 20

 30

 40

 50

 60

 70

 80

 18  18.5  19  19.5  20

R
M

S
(X

m
ax

) 
[g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 0.01

 0.1

 1

 10

 100

 18.5  19  19.5  20  20.5

E
2  d

N
/d

E
 [e

V
 c

m
-2

 s
-1

 s
r-1

]

log10 Energy [eV]

Emax,Z=1020.5 eV
α=1.6

20% p and 80% N

 650

 700

 750

 800

 850

 18  18.5  19  19.5  20

<
X

m
ax

>
 [g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 10

 20

 30

 40

 50

 60

 70

 80

 18  18.5  19  19.5  20

R
M

S
(X

m
ax

) 
[g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 0.01

 0.1

 1

 10

 100

 18.5  19  19.5  20  20.5

E
2  d

N
/d

E
 [e

V
 c

m
-2

 s
-1

 s
r-1

]

log10 Energy [eV]

Emax,Z=1021 eV
α=1.8

10% p and 90% Si

 650

 700

 750

 800

 850

 18  18.5  19  19.5  20

<
X

m
ax

>
 [g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

 10

 20

 30

 40

 50

 60

 70

 80

 18  18.5  19  19.5  20

R
M

S
(X

m
ax

) 
[g

 c
m

-2
]

log10 Energy [eV] 

protons

Iron

Auger 2009
QGSJET

QGSJET II
SIBYLL 2.1

EPOS

FIG. 4: The same as in previous figures, but for selected cases in which a mixed chemical composition is injected from cosmic
ray accelerators. From top-to-bottom, the chemical mixture at injection is given by: 50% protons and 50% iron, 80% nitrogen
and 20% iron, 20% nitrogen and 80% silicon, 20% protons and 80% nitrogen, and 10% protons and 90% silicon, respectively.
The injected spectral index, α, was selected in each case to best match the spectral shape reported by the PAO. The ratios of
different elements were chosen to provide the best fit to the combination of 〈Xmax〉 and RMS(Xmax). In each case, we have
used Emax of either 1020.5 eV or 1021 eV, depending on which yields the best fit, where Emax refers to the cutoff energy for iron
nuclei, which is related to the cutoff for a species with electric charge Z by Emax,Z = (Z/26)×Emax. See text for more details.
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surements. We find that while either the 〈Xmax〉 or the
RMS(Xmax) data can be accommodated without much
difficulty, it is again challenging to find an injected spec-
trum and composition that is in agreement with both
〈Xmax〉 and RMS(Xmax) simultaneously. In particular,
if 〈Xmax〉 is well fit, then the predictions for RMS(Xmax)
tend to exceed the measured values. Similarly, if the mea-
surements of RMS(Xmax) are well fit, the predictions for
〈Xmax〉 tend to be well below the measured values. The
only exception we find to this conclusion is the case in
which the injected spectrum consists of a mixture of ni-
trogen nuclei (80%) and protons (20%), which (using the
EPOS hadronic simulation) can provide a reasonable fit
to both 〈Xmax〉 and RMS(Xmax) measurements. In this
case, however, the spectral shape drops far more rapidly
than measured by the PAO, leading to a poor fit. The
mixtures of chemical species which we have found lead to
the best overall fit to the PAO’s spectrum, 〈Xmax〉, and
RMS(Xmax) measurements (80% nitrogen and 20% iron,
80% silicon and 20% nitrogen, and 90% silicon and 10%
protons) accommodate the data only about as well as in
the case of a pure silicon injection spectrum. Thus, the
consideration of a mixed, two component, chemical com-
position from cosmic ray sources does not significantly
improve the agreement with the PAO data.

IV. THE IMPACT OF INTERGALACTIC

MAGNETIC FIELDS

A charged cosmic ray moving through a uniform mag-
netic field will be deflected by an angle θ0 = Lcoh/RL,
where Lcoh is the size of the region being traveled through
(the coherence length) and RL is the Larmor radius of
the particle. Over the course of its propagation, a typi-
cal UHECR will travel through a large number of regions
with differing magnetic orientations, which over a dis-
tance D leads to an overall deflection of θ ≈ θ0

√

D/Lcoh.
For nano-Gauss scale fields with coherence lengths of
1 Mpc, this yields

θ ≈ 17◦
(

1020 eV

E

)(

D

10 Mpc

)0.5(
Lcoh

Mpc

)0.5(
B

nG

)(

Z

10

)

,(4)

where E is the energy of the cosmic ray, Z is its charge,
and B is the strength of the intergalactic magnetic field.
Such deflections cause cosmic rays to propagating over
longer effective distances than the straight line distance,
with the path extension, in the small angle limit, being
approximately given by:

Deff

D
≈ 1 +

θ2

2
≈ 1 +

[

0.04

(

1020 eV

E

)2(
D

10 Mpc

)(

Lcoh

Mpc

)(

B

nG

)2(
Z

10

)2]

. (5)

Magnetic deflections impact particles with the greater
electric charge and/or lower energy more than other cos-
mic rays, and thus effect the resulting spectral shape
and composition that are predicted to reach Earth [6].
In Figs. 5, 6, and 7, we show our results for all-iron,
all-silicon, and all-nitrogen accelerating sources, respec-
tively, and for intergalactic magnetic fields of 0.0, 0.1, and
0.3 nG, with coherent scales of 1 Mpc for the non-zero
B-field cases. In the case of all-iron injection, the tension
between the PAO’s 〈Xmax〉 and RMS(Xmax) measure-
ments is reduced to some degree by the effects of the mag-
netic fields, but the spectral fit becomes worse as the field
strength is increased. In the all-silicon and all-nitrogen
cases, quite good agreement can be found with the PAO
data. In particular, for ∼(B/0.3 nG)×(Lcoh/1 Mpc)1/2,
we find an overall χ2 per degree-of-freedom of 1.45 and
1.14 for the all-silicon and all-nitrogen cases, respectively
(using EPOS, which yields a better fit than the other
hadronic simulations). These represent far better fits
than we have found without magnetic fields.

There are also mixtures of injected nuclei that can pro-
vide excellent fits to the PAO’s data if the effects of inter-
galatic magnetic fields are included. In Fig. 8, we show
results for the two mixtures that we found to provide

the best overall fits to the PAO’s data. As expected, a
mixture of injected nitrogen and silicon provides a very
good fit (χ2 per degree-of-freedom less than 1.0 for mix-
tures with between 10% and 50% silicon). We also find
that injected nitrogen with a small (∼ 10%) admixture
of iron yields a very good fit with 0.3 nano-Gauss mag-
netic fields with coherence lengths of 1 Mpc. In each
case considered here, including an admixture of protons
in the injected flux from UHECR sources only worsens
the overall quality of the fit.

To some extent, the key aspects of these results follow
from the consideration of the unfolded arriving UHECR
composition at Earth from the PAO data. As an exam-
ple case to demonstrate this, we consider the ∼1019.3 eV
〈Xmax〉 and RMS(Xmax) PAO data point. For the EPOS
model, this point is found to sit on the line expected for
nitrogen nuclei for both 〈Xmax〉 and RMS(Xmax). The
possibility that a mixed composition may be also con-
sistent with the data is then tested through the consid-
eration of fractional admixtures, in multiples of 1/5, of
protons, helium, nitrogen, and iron. Only the case of a
small admixture of 20% helium is found to still be able to
provide agreement for both the 〈Xmax〉 and RMS(Xmax)
data (staying within the error bars of their respective
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FIG. 5: Results for an all-iron injection spectrum with negligible magnetic fields (top), 0.1 nano-Gauss (middle), and 0.3
nano-Gauss (bottom) intergalactic magnetic fields. For the non-zero B-field cases, a coherence length of the magnetic field of
1 Mpc has been used.

data point), no other possible admixtures are found to
provide such agreement with this data point in both data
sets. Thus, in order to ensure such a composition arrives,
the injected composition must be both relatively narrow
(in charge distribution) and heavier than nitrogen.

V. DISCUSSION AND CONCLUSIONS

In this article, we have studied the propagation of
ultra-high energy cosmic ray nuclei in an attempt to
find scenarios that provide a good fit to the observa-
tions of the Pierre Auger Observatory (PAO), including
the measured spectrum, average depth of shower maxi-
mum (〈Xmax〉), and the RMS fluctuations of the depth
of shower maximum (RMS(Xmax)).

We have found that the PAO’s data is best accom-
modated in cases in which the sources of the UHECRs
inject largely intermediate mass nuclei, ranging from
roughly nitrogen to silicon. Furthermore, the presence
of ∼(B/0.3 nG)×(Lcoh/1 Mpc)1/2 intergalactic magnetic
fields lead to far better fits than are found in the absence

of cosmic ray deflection. No good fits to the PAO’s mea-
surements were found without significant intergalactic
magnetic fields.2 Furthermore, no good fits were found in
any scenario in which the sources of the UHECRs inject a
significant (>∼ 10%) fraction of protons. Should the PAO
data points all be shifted up in energy by approximately
20%, as has been suggested [26], the best fit results, for
all cases quoted here, are found to shift towards a heavier
nuclei composition.

These results have a number of interesting and impor-
tant consequences. Firstly, if the cosmic ray spectrum
consists largely of intermediate mass nuclei at the high-
est energies, as our results suggest is the case, one would
not expect any significant correlation between the arrival
directions and sources of such particles. For a µG-scale
Galactic Magnetic Field with a correlation lenth of ∼1
kpc, a 6×1019 eV nucleus with Z ≈ 10 would be deflected

2 Although magnetic fields in the vicinity of the sources could also
plausibly account for this conclusion.
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FIG. 6: Results for an all-silicon injection spectrum with 0.0 nG (top), 0.1 nG (middle), and 0.3 nG (bottom) intergalactic
magnetic fields. For the non-zero B-field cases, a coherence length of the magnetic field of 1 Mpc has been used.
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FIG. 7: Results for an all-nitrogen injection spectrum with 0.0 nG (top), 0.1 nG (middle), and 0.3 nG (bottom) intergalactic
magnetic fields. For the non-zero B-field cases, a coherence length of the magnetic field of 1 Mpc has been used.
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FIG. 8: The same as in previous figures, but for injection mixtures of 70% nitrogen and 30% silicon (top) or 90% nitrogen
and 10% iron (bottom), for 0.3 nG intergalactic magnetic fields with coherence lengths of 1 Mpc. These cases each provide
excellent fits to the spectrum, 〈Xmax〉, and RMS(Xmax) measurements from the PAO. See text for more details.

by on the order of 10◦, in addition to any deflection re-
sulting from intergalactic fields. This conclusion, per-
haps, suggesting difficulties for the prospects of UHECR
astronomy, for all but the most bright local sources.

Under the assumption that the UHECRs consist
uniquely of protons, a “guaranteed” flux of UHE neu-
trinos is predicted to be produced as a result of their
propagation. This signal, known as the cosmogenic neu-
trino flux [27], is potentially within the reach of experi-
ments such as IceCube [28], ANITA [29], and the PAO
itself [30]. If the the UHECR spectrum consists of heavy
nuclei, however, the cosmogenic flux can be considerably
suppressed [31]. In the scenarios that we have found to
fit the PAO’s data, the cosmogenic neutrino spectrum is

predicted to be suppressed by an order of magnitude or
more relative to the all-proton case [32]. The neutrino
flux from the sources of the UHECRs themselves is also
expected to be suppressed in these scenarios [33].
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